Advancing Radiation-Hardened CMOS Detectors for NASA Missions
Donald Figer Rochester Institute of Technology The objective of this grant is to investigate methods to reduce and mitigate the effects of radiation damage on single-photon counting and photon number resolving optical imaging detectors. To accomplish this, professor Finger and his team will develop computational models of these devices as well as test a number […]
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Donald Figer
Rochester Institute of Technology
The objective of this grant is to investigate methods to reduce and mitigate the effects of radiation damage on single-photon counting and photon number resolving optical imaging detectors. To accomplish this, professor Finger and his team will develop computational models of these devices as well as test a number of commercially available designs. They will attempt to minimize the transient effects of radiation by exploring innovative new ways to read and process their data, develop new ways of driving and operating them, and use analysis of output data to pinpoint and understand radiation related damage mechanisms. The team will also work to extend the operating rage of these devices to infrared wavelengths, an important capability for many NASA applications.
What's Your Reaction?