Continuous Bending-mode Elastocaloric Composite Refrigeration System for Compact, Lightweight, High-Efficiency Cooling
Nenad Miljkovic University of Illinois at Urbana-Champaign Traditional elastocaloric refrigeration systems are based on uniaxial compression of the elastocaloric material which makes them highly constrained by actuator requirements, the physics of column buckling, and limited surface area for heat transfer. Professor Miljkovic will investigate a novel elastocaloric system based on bending of the elastocaloric material, […]
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Nenad Miljkovic
University of Illinois at Urbana-Champaign
Traditional elastocaloric refrigeration systems are based on uniaxial compression of the elastocaloric material which makes them highly constrained by actuator requirements, the physics of column buckling, and limited surface area for heat transfer. Professor Miljkovic will investigate a novel elastocaloric system based on bending of the elastocaloric material, which removes these constraints. The design requires less energy for equivalent performance and can be run in a continuous loop further increasing efficiency. The team will also investigate methods like heat treatment to tune the elastocaloric material to their application.
What's Your Reaction?