NASA Webb Wows With Incredible Detail in Actively Forming Star System

High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and structure in Lynds 483 (L483). Two actively forming stars are responsible for the shimmering ejections of gas and dust that gleam in orange, blue, and purple in this representative color image. Over tens of thousands of years, the central protostars […]

SINSIN
Mar 7, 2025 - 22:00
 0  0
NASA Webb Wows With Incredible Detail in Actively Forming Star System
5 Min Read

NASA Webb Wows With Incredible Detail in Actively Forming Star System

At the center is a thin vertical cloud known as Lynds 483 that is shaped like an hourglass with irregular edges. At lower center are two discrete bright white, tiny blobs of light that have raced away from the hidden central stars. The top lobe shows a more prominent orange U-shape. Orange bleeds into light purple, and brighter pink at its edges. Some background stars are visible through sections of this lobe. Higher up, there is an orange arc. Some brighter pink material extends to the top edges near the center. In the lower lobe, less orange is visible. More opaque light purple is in its top third, rippling out into semi-transparent blues and pinks. The lower lobe has more texture. V-shapes left and right of the lobes are darkest, and the background stars in these areas appear orange. Elsewhere, the black background of space is clearer, speckled with tiny white stars and faint orange galaxies.
Shimmering ejections emitted by two actively forming stars make up Lynds 483 (L483). High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows incredible new detail and structure within these lobes.
Credits:
NASA, ESA, CSA, STScI

High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and structure in Lynds 483 (L483). Two actively forming stars are responsible for the shimmering ejections of gas and dust that gleam in orange, blue, and purple in this representative color image.

Over tens of thousands of years, the central protostars have periodically ejected some of the gas and dust, spewing it out as tight, fast jets and slightly slower outflows that “trip” across space. When more recent ejections hit older ones, the material can crumple and twirl based on the densities of what is colliding. Over time, chemical reactions within these ejections and the surrounding cloud have produced a range of molecules, like carbon monoxide, methanol, and several other organic compounds.

Image A: Actively Forming Star System Lynds 483 (NIRCam Image)

At the center is a thin vertical cloud known as Lynds 483 that is shaped like an hourglass with irregular edges. At lower center are two discrete bright white, tiny blobs of light that have raced away from the hidden central stars. The top lobe shows a more prominent orange U-shape. Orange bleeds into light purple, and brighter pink at its edges. Some background stars are visible through sections of this lobe. Higher up, there is an orange arc. Some brighter pink material extends to the top edges near the center. In the lower lobe, less orange is visible. More opaque light purple is in its top third, rippling out into semi-transparent blues and pinks. The lower lobe has more texture. V-shapes left and right of the lobes are darkest, and the background stars in these areas appear orange. Elsewhere, the black background of space is clearer, speckled with tiny white stars and faint orange galaxies.
Shimmering ejections emitted by two actively forming stars make up Lynds 483 (L483). High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows incredible new detail and structure within these lobes, including asymmetrical lines that appear to run into one another. L483 is 650 light-years away in the constellation Serpens.
NASA, ESA, CSA, STScI

Dust-Encased Stars

The two protostars responsible for this scene are at the center of the hourglass shape, in an opaque horizontal disk of cold gas and dust that fits within a single pixel. Much farther out, above and below the flattened disk where dust is thinner, the bright light from the stars shines through the gas and dust, forming large semi-transparent orange cones.

It’s equally important to notice where the stars’ light is blocked — look for the exceptionally dark, wide V-shapes offset by 90 degrees from the orange cones. These areas may look like there is no material, but it’s actually where the surrounding dust is the densest, and little starlight penetrates it. If you look carefully at these areas, Webb’s sensitive NIRCam (Near-Infrared Camera) has picked up distant stars as muted orange pinpoints behind this dust. Where the view is free of obscuring dust, stars shine brightly in white and blue.

Unraveling the Stars’ Ejections

Some of the stars’ jets and outflows have wound up twisted or warped. To find examples, look toward the top right edge where there’s a prominent orange arc. This is a shock front, where the stars’ ejections were slowed by existing, denser material. 

Now, look a little lower, where orange meets pink. Here, material looks like a tangled mess. These are new, incredibly fine details Webb has revealed, and will require detailed study to explain.

Turn to the lower half. Here, the gas and dust appear thicker. Zoom in to find tiny light purple pillars. They point toward the central stars’ nonstop winds, and formed because the material within them is dense enough that it hasn’t yet been blown away. L483 is too large to fit in a single Webb snapshot, and this image was taken to fully capture the upper section and outflows, which is why the lower section is only partially shown. (See a larger view observed by NASA’s retired Spitzer Space Telescope.)

All the symmetries and asymmetries in these clouds may eventually be explained as researchers reconstruct the history of the stars’ ejections, in part by updating models to produce the same effects. Astronomers will also eventually calculate how much material the stars have expelled, which molecules were created when material smashed together, and how dense each area is.

Millions of years from now, when the stars are finished forming, they may each be about the mass of our Sun. Their outflows will have cleared the area — sweeping away these semi-transparent ejections. All that may remain is a tiny disk of gas and dust where planets may eventually form.

L483 is named for American astronomer Beverly T. Lynds, who published extensive catalogs of “dark” and “bright” nebulae in the early 1960s. She did this by carefully examining photographic plates (which preceded film) of the first Palomar Observatory Sky Survey, accurately recording each object’s coordinates and characteristics. These catalogs provided astronomers with detailed maps of dense dust clouds where stars form — critical resources for the astronomical community decades before the first digital files became available and access to the internet was widespread.

The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Claire Blomecblome@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

View more: Webb images of similar protostar outflows – HH 211 and HH 46/47

Animation Video: “Exploring Star and Planet Formation”

Explore the jets emitted by young stars in multiple wavelengths: ViewSpace Interactive

Read more: Birth of Stars with Hubble observations

Related For Kids

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow

SIN ScienceX Information Network (SIN) | ScienceX Innovations